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Summary. The truncated expansion of the function Ix I was frequently used to 
express the total Hfickel n-electron energy (E) in terms of moments. We now 
present an identity which connects E with an infinite series of moments. This 
series is convergent. Lower and upper bounds for E are obtained, based on the 
same infinite moment expansion. 
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1. Introduction 

The fact that the quantity E in Eq. (1) for the total Hfickel n-electron energy: 

Etot = nc~ +Eft (1) 

satisfies the relation: 

E =  Ix l (2) 
j = l  

was known already to the earliest researchers in this area [1-3]. In Eq. (2) xj 
stands for the eigenvalue of the respective adjacency matrix [4, 5] and n is the 
total number of n-centers in the respective conjugated molecule. The function Ix ] 
means the absolute value of the variable x. Usually, the quantity E is considered 
instead of Etot and is also named "total n-electron energy"; this is formally 
achieved by expressing the energy levels in so-called//-units (e -- 0 , / / =  1). When 
//-units are employed, then xj coincides with the energy of the j - th  MO. Equation 
(2) holds provided all the bonding MOs are doubly occupied and all the 
antibonding MOs are empty and provided the trace of the underlying adjacency 
matrix is zero [4]. As well known [5], this latter condition is obeyed only in the 
zeroth order "same ~, same fl" version of the H/ickel model and even then only 
by aromatric and unsaturated hydrocarbons. In spite of all these limitations, the 
quantity E continues to attract the attention of theoretical chemists and is 
extensively studied in the chemical literature over almost half a century; for a 
recent review of the work on Hfickel total n-electron energy and a critical 
evaluation of the range of its Chemical applicability see [6]. 
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The approximation of the function Ixl in Eq. (2) by means of a truncated 
power series: 

L 

[x[~ 2 a2k x2k (3) 
k = 0  

has been proposed and/or utilized by a large number of researchers [7-16]. 
Equation (3) immediately leads to a moment-expansion of E, namely: 

L 

E ,.~ ~ a2kM2k. (4) 
k = O  

Here and later Mr denotes the r-th spectral moment defined as 

Mr = ~ (xj) r. 
k = l  

The importance of Eq. (4) lies in the fact that we know how the first few 
moments depend on molecular structure (see [17-20] and the references cited 
therein). Therefore by means of Eq. (4) we gain a considerable insight into the 
structural factors which influence the value of the quantity E in Eq. (1) and thus 
may somewhat better understand the structure-dependence of total zt-electron 
energy of conjugated x-electron systems. The disadvantage of Eq. (4) is that the 
coefficients a2k on its right-hand side strongly depend on the truncation parame- 
ter L. In particular, for L ~ ~ :  

lira a0 = 0 (5a) 

lim[( - 1) k- la2k ] = ~ ,  k > 0. (5b) 

The expansion (3) is certainly divergent in the point-wise sense, but it always can 
be chosen to be convergent in the L 2 sense (for respective details see e.g. [21]). 
Consequently, the truncation of the right-hand side of Eq. (4) need not result in 
serious numerical errors in E. The real problem, however, lies in the fact that in 
structure-dependence studies E has to be partitioned into contributions which are 
interpreted as the effects of particular structural features of the molecule exam- 
ined. When Eq. (4) is used for this purpose, then the calculated energy-effects are 
functions of the coefficients azk and are thus significantly influenced by the actual 
value of the truncation parameter L. In a recently studied example the results of 
such an energy-partitioning were shown to be chemically unreliable [12, 15]. The 
limits (5) are, of course, equivalent to the well-known nonexistence (i.e. diver- 
gence) of an infinite power-series expansion of the function Ix I. Some authors 
tried to overcome this difficulty by expanding I xl in powers of x -  Xo, x0 ¢ 0 
[3, 18, 22], but then E is not at all expressed in terms of spectral moments. Only 
if the latter expansion is truncated, the resulting approximate formula for E can 
be transformed into the form. of Eq. (4). Then, however, the above mentioned 
problems with the L-dependence of the coefficients a2k and the infiniteness of 
their limit values cannot be avoided. 

In this paper we approach the moment expansion of total ~-electron energy 
from a different direction and obtain a mathematically exact and point-wise 
convergent power-series formula. 

2. An auxiliary result 

As already mentioned, Xl, x 2 , . . . ,  xn denote the eigenvalues of the adjacency 
matrix (and are, consequently, closely related to the HMO energy levels). Then 
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the polynomial P(x), determined via Eq. (6): 

P(x) = f i  (x - xj)  (6) 
. ]~  1 

is the secular (or characteristic) polynomial of the respective re-electron system 
[41. 

In what follows we demonstrate a property of any polynomial P(x)  whose 
zeros are Xl, x2, • • • xn. 

Let P'(x)  = (d/dx)P(x) .  Then from Eq. (6): 

P t ( x )  = ( x  - -  x 2 ) ( x  - -  x 3 ) ( x  - -  x 4 )  ' ' '  ( x  - -  x . )  

-~  ( x  - -  X l ) ( X  - -  x 3 ) ( x  - -  x 4 )  • • • ( x  - -  X n )  

+ (x  - x l ) ( x  - x . ) ( x  - x4) • • " ( x  - x . )  

"[- " " " -]- ( X  - -  X 1 ) ( X  - -  X 2 ) ( X  - -  X 3 )  ' ' "  ( X  - -  X n __ 1) 

= ~ P(x)/(x - xj) 

i.e.: 

P' (x ) /P(x )  = ~ ( x - - X  j )  - 1  (7) 
j = l  

The identity (7) readily yields: 

- P '  P = (1 - -  txj) -1. (8) 
t j = l  

The term ( 1 -  txj) - I  on the right-hand side of Eq. (8) is just the sum of a 
geometric progression, i.e.: 

( 1 - t x j )  1=  ~ ( t x j ) "  
r = 0  

provided: 

Itxjl  < 1. (9) 

Consequently, if the condition (9) holds for all j = 1, 2 . . . . .  n, then: 

j = l  j = l r = 0  r = O  

and, bearing in mind Eq. (8): 

I p. (~)/p (~) ~. M.t'. (10) 
t r = 0  

3. The main result 

In 1940 Coulson [1] showed that the total Hfickel ~-electron energy, satisfying 
Eq. (2), conforms to the remarkable integral formula: 

1 f + ~  E = - F(x)  dx (11) 
7r, oe 
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where 

F(x )  = n - i xP ' ( i x )  /P(ix) .  (12) 

In Eq. (12) P(x)  is the secular polynomial and i = x / / - ~ .  (For details on 
Coulson integral formulas for E see [23], pp. 139-143.) 

Substituting ix = 1/t and using the identity (10) we transform the integrand 
(12) into: 

F ( x )  = n - ~ M r ( - i / x )  r. (13) 
r = 0  

Taking into account that M0 = n, Eq. (13) is further simplified as: 

F ( x ) = -  ~ M , ( - i / x ) ' =  ~ (--1)k--lM2k X-2k 
r = l  k = l  

+ i ~ (--  1) k 1Mak_ lX--(2k 1) 
k = l  

(14) 

This latter formula holds for all values of the variable x, such that Ix I>lx~ 1, 
j = l , 2  . . . . .  n. 

Let A be a positive number, such that A > l x j ] ,  j = l , 2  . . . .  ,n. Let 
D = ( - o o , - A ] w [ A , + o o ) .  Then Eq. (14) is applicable for all x e ~ .  
Combining Eqs. (11), (12) and (14) we attain at: 

E = -  ( - 1 )  k-  M2kx- d x - f f -  ( - 1)k- lM2k_ lX-(2k- 1) dx 
~)k= l  T/; k = l  

+ - F (x )  dx. (15) 
7C A 

The second integral on the right-hand side of Eq. (15) is equal to zero because 
the respective integrand is an odd function of x. Recalling further that: 

f x 2kdx = 2 ( 2 k -  1)-IA -(2~-1) 

we readily arrive at our final result. 

Theorem 1 
Let A be any positive real number which exceeds all the eigenvalues 
xl,  x 2 , . . . ,  xn. Then the total Hiickel re-electron energy E satisfies the identity: 

2 ~ 
E = ~ k21= ( -- 1) k-  1(2k -- 1) -1A -(2k-1)M2 k + Eo (16) 

where 

2f0A = - [n -- i xP ' ( i x ) /P( ix ) ]  dx. G rc 

This identity holds if and only if the condition (2) is obeyed. 

(17) 
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4. Moment-expansion-based bounds for total n-electron energy 

The integrand in Eq. (17) is a positive-valued bell-shaped function with maxi- 
mum at x = 0 [24]. Because F(0) = n, for all real values of x the function F(x)  
is bounded as follows: 

0 < F(x)  <-G n. 

Applying these relations to Eq. (17) one immediately concludes that: 

0 < Eo < (2/~r)An = (2/~)AMo. (18) 

The inequalities (18) together with Eq. (16) result in the following lower and 
upper bounds for total ~-electron energy. 

Theorem 2 
Let A be any positive real number which exceeds all eigenvalues Xl, x2, • . . ,  xn. 
Then the total Hfickel ~-electron energy E is bounded from both below and 
above by the same infinite series of moments: 

2 
( - 1) k 1(2k - 1)- 1A -(2k-1)Mz k < E 

~ k = l  

2 oo 
< - -  ).] ( - - 1 ) k - 1 ( 2 k  - 1)-'A-(2k-~)Mzk. (19)  

7~k=0 

The estimates (19) are not very narrow and much better lower and upper bounds 
for E are known (see, for instance, [25]). We pointed out the relations (19) 
because of their appealing form and because they may contribute towards a 
better understanding of the moment-expansion techniques. 

5. Concluding remarks 

Equation (16) represents a kind of moment expansion of the total n-electron 
energy. It, however, reveals that only one part of E, namely E -  E0, can be 
expanded into a point-wise convergent infinite series of moments. This part 
of E depends solely on even moments. Furthermore, the moments 
m 2 ,  m 6 ,  MlO . . . .  , m4m+2 . . . .  have positive (stabilizing) contributions to E 
whereas the moments M4, Ms, M12 . . . .  , M4 . . . . .  have negative (destabilizing) 
effects. This latter regularity precisely parallels the previously formulated "loop 
rule" [9]. 

The other, "irreducible" part of total 7r-electron energy, which cannot be 
expanded in terms of moments, is given by Eq. (17). Because the parameter A in 
Eq. (17) is necessarily greater than the maximal MO energy level, the quantity Eo 
is numerically quite significant and is by no means negligible, as compared to 
E -  E0. The existence of such an "irreducible" component was systematically 
overlooked in the previous moment-expansion studies of the total g-electron 
energy. This should be considered as a major pitfall in the efforts to express E 
(solely) in terms of spectral moments. 

The quantity Eo evidently deserves a particular attention. The bounds (18) 
for E 0 are very weak indeed and certainly need to be improved. Using a 
previously elaborated method [24] we can approximate the integrand F(x),  Eq. 
(12), by means of a simple algebraic function: 

F(x)  ~ M o M 2 ( M  2 + Mo x2) - - 1  



318 I. Gutman 

which by applying Eq. (17) yields: 

Eo ~ 2 (MoM2)1/2 arctg[A(Mo/M2)1/2]. 
n 

We note in passing that in the case of uncharged conjugated hydrocarbon 
molecules, M0 and a 5M2 are equal to the numbers of carbon atoms and carbon- 
carbon bonds, respectively [4]. 

Theorem 1, being a mathematically exact result, in an implicit manner 
indicates that the strategy of approximating the total n-electron energy only by 
means of linear combinations of certain spectral moments is not a good one. A 
nonnegligible part of E behaves in a way which cannot be adequately described 
by moment-based expressions. Therefore the method of moment expansion 
(although used over a very long period of time and by numerous researchers 
[3, 4, 7-16, 18, 22]) should be critically revisited and augmented by an appropri- 
ate analysis of the "irreducible" term E0. 
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